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Abstract
We show by analytic calculation and numerical simulation that the effect of
trap displacements are amplified in mixtures of Bose–Einstein condensates,
consistent with experimental observations. We also investigate the relative
stability of inner and outer vortex states as the minima of the trapping potentials
are displaced along the axis of rotation.

Mixtures of Bose–Einstein condensates (BEC) in traps have recently received considerable
interest [1, 2]. Hall and co-workers [1] studied a condensate consisting of simultaneously
trapped atoms of 87Rb in two different hyperfine spin states |1〉 = |F = 1,mf = −1〉 and
|2〉 = |2, 1〉 with trapping potentials V1, V2. The scattering lengths of the states |1〉 and |2〉 are
known to be in the proportion a11:a12:a22 = 1.03:1.0:0.97 with the average of the three being
55(3) Å. They found that when the minima of the trapping potentials V1 and V2 are displaced
from each other by a distance which is small compared to the size of the total condensate the
resulting separation of the centres of mass of the condensates is much larger [1]. In this paper
we provide for an analytical and numerical explanation for this result.

The basic physics of this amplification of the trap centre difference comes from the two
possible final configurations of the mixture and that the system is close to the ‘critical point’ that
separates the two final configurations; essentially the same idea in modern electronics where
amplification comes from being close to the ‘critical point’ of the feedback loop. The two
configurations are the symmetric one where one component is inside and the other component
is outside and the asymmetric one [3–5] where the two components are on opposite sides.
The former configuration is favoured when κ = √

a11/a22 is different from one, with the less
repulsive component in the middle where the density is higher. The asymmetric configuration
possess a lower interface energy and is favoured when κ is close to one. We find that in the
Thomas–Fermi approximation (TFA), when the trapping frequencies for the two components
are the same, the amplification factor is proportional to 1/(κ − 1).
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We also find that the relative magnitude of the critical angular velocity to generate vortices
in the inner and the outer condensates changes as the trap centres are moved apart. This effect
remains to be investigated experimentally. We now explain our results in detail.

In order to explore the boundary between the two condensates, we begin with the analysis
of their behaviour in the framework of the TFA, which ignores the kinetic energy terms in the
Gross–Pitaevskii equations for the condensate wavefunctions [8].

In dimensionless variables, the Gross–Pitaevskii equations for the condensates in the
harmonic traps may be written in the form
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′), ψi(r) is the wavefunction of the species i of a two-species

condensate (i = 1, 2). λ = ωz/ω. r = a⊥r′, where a⊥ = (h̄/mω)1/2. ω is the
trapping frequency. µ′

i = 2µi/h̄ω, where µi is the chemical potential of the species i. The
chemical potentials µ1 and µ2 are determined by the relations

∫
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′) is normalized to 1. z′0 denotes the shift of the
minimum of the trapping potential in the vertical direction.

Equations (1) and (2) were obtained by minimization of the energy functional of the
trapped bosons given by
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The energy of the system E is related to E′ by E = h̄ωE′.
In the TFA, equations (1)–(3) can be further simplified by omitting the kinetic energy terms.

In the framework of TFA the phase segregated condensates do not overlap, from equations (1)
and (2) we obtain the simple algebraic equations
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Here� denotes the unit step function and ρ ′2 = x ′2 +y ′2. If z′0 = 0, from equations (4) and (5)
one can see that the condensate density has the ellipsoidal form. This case has been considered
in detail in [6, 7].

In the case of phase separation, the energy of the system can be written in the form [6, 7]
E = E1 + E2, where
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Figure 1. The distance between the centres of mass of the condensates (divided by the total length
of the density distribution in the z direction) as a function of α for N1 = N2 from both the TF
approximation and through numerical minimization of the energy functional.

To determine the position of the boundary between the condensates, we use the condition
of thermodynamic equilibrium [9]: the pressures exerted by both condensates must be equal,
P1 = P2. The pressure is given by [10] Pi = Gii |ψi |4/2, where Gii = 4πh̄2aii/mi. Using
these equations one can obtain the equation for the interface boundary

ρ ′′2 +
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= R2 (8)
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1z
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As we emphasized in the introduction, the effective shift of the boundary in equation (8) is
inversely proportional to κ − 1. Using normalization condition

∫ |ψ ′
i (r

′)|2 d3r ′ = 1, one can
determine the chemical potentials µ′

i as functions of N1, N2 and α. The exact formulas for µ′
1

and µ′
2 obtained after tedious but straightforward calculations are rather cumbersome and will

be given elsewhere. In this paper we discuss the results of the calculations. To be specific, we
shall use the parameters corresponding to the experiments on 87Rb atoms a⊥ = 2.4×10−4 cm,
N = N1 +N2 = 0.5 × 106 atoms, λ = √

8.
In figure 1 we show the distance between the centres of mass of the condensates (divided by

the total length of the density distribution in the z direction) as a function of α, calculated in the
framework of TFA. In particular, forα = 0.03 the separation of the centres of mass is 32% of the
extent of the entire condensate. This value should be compared with the experimental quantity
20% [1]. The discrepancy between calculated and experimental values may partly be due to the
effect of temperatures. To study if the accuracy of the TF approximation, we have minimized
the full functional in equation (3). We use a Monte Carlo simulated annealing technique
that has been described previously [4]. This scheme enables one to calculate configuration
average of a physical quantity X defined by 〈X〉 = ∑

ρ exp(−F/T )X(ρ)/∑
ρ exp(−F/T ).

We calculate 〈X〉 with decreasing T until the result stabilizes. In our calculation, we have used
a mesh of 40 × 40 × 40 sites, with 24 000 MC steps/site. The results for the centre of mass
difference are shown in figure 1 (dotted curve). The agreement with the TF result is good.

From equations (8), (9) the evolution of the system upon increasing α may be described
as follows: for α = 0 condensate 1 forms the shell about the ellipsoidal condensate 2. The
semiaxis of this ellipsoid is given by equation (8) for α = 0. Upon increasing α the inner
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Figure 2. The cross sections of the condensate by the plane along the z-axis for different values of
α and N2/N1. Solid curves correspond to the border of the |1〉 atoms and dashed curves—the |2〉
atoms.

ellipsoid moves upwards, while external one moves down. It may be shown that they touch

each other for the critical value of α: αc = 1
2

(
1 −

√
µ′

2
µ′

1

)
. For α > αc phase boundary (8)

intersect boundaries of condensates at the points with coordinates:

λz′′c = α

κ − 1
− (κ − 1)(R2 − 1)

4ακ
(10)

r ′′1,2 = ±
√

1 − (λz′′c + α)2 (11)

which can be obtained from equations (4)–(8).
Figure 2 illustrates the behaviour of the condensates for different values ofα andN2/N1. In

figure 2 we show the cross-section of the condensate by the plane along the z-axis. α = 0.0047
is equal to the critical value of α for N1 = N2. From figures 2(a)–(c) one can see that for
N2/N1 = 0.5 α = 0.0047 is less than the critical value, but for N2/N1 = 2 it is larger than
the critical value. α = 0.03 (approximately 3% of the extent of the density distribution in the
vertical direction) corresponds to the experimental situation in [1]. One can see that when α
increases, the phase boundary becomes more flat. It should be noted that rather small shifts of
the trapping potential centres with respect to each other produce considerable changes of the
form of the phase boundary.

The density distribution obtained from minimization of the full functional for N1 = N2

are illustrated in figure 3 where we show the contour plots of the two densities (solid and
dashed curves) as a function of x and z for y = 0 for α = 6, 0.6%. The finite extent of the
interface domain boundary is obvious.
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(a) (b)

Figure 3. Counter plots of the density of the two components as a function of z and x for y = 0
for (a) α = 0.006 and (b) α = 0.06.

Another interesting question is how the vortex states change when the minima of the
trapping potentials V1 and V2 are displaced with respect to each other. In a frame rotating with
the angular velocity $ along the z-axis the energy functional of the system is

Erot(l1, l2) = E(ψl1 , ψl2) +
∫

d3r (ψ∗
l1

+ ψ∗
l2
)ih̄$∂φ(ψl1 + ψl2) (12)

where ψlj (r) = |ψlj (r)|eilj φ is the wavefunction for the vortex excitation with angular
momentum h̄lj . In the TFA, the vortex induced change in condensate density is negligible [11]
(hydrodynamic approximation).

In the case of the phase segregated condensate, one finds from equations (12) and (6), (7)
that the energy change due to presence of the vortices )E = Erot(l1, l2) − Erot(0, 0) has the
form

)E = )EN1 +)EN2 = 1

2
h̄ω1N1

∫
d3r ′

(
l21

ρ ′2 |ψ ′
1|2 − 2$l1
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(
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ω1
|ψ ′

2|2
)
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In the hydrodynamic limit ψ ′
i is given by equations (4) and (5).

In the case α = 0 critical velocities as functions of ratio N2/N1 have been calculated
in [6]. It was shown that for all values of N2/N1, the critical velocity $N2 for the formation
of vorticies in the inner condensate is larger than the critical velocity $N1 of the outer vortex.
So upon increasing $, a vortex will appear first in the external condensate. However, if for
a given $ one shifts the centres of the trapping potentials with respect to each other in the
vertical direction, the inner condensate expands radially. One expects that the critical velocities
of the condensates become closer and even can be equal for some values of α and N2/N1.
Figure 4 shows the behaviour of critical velocities as functions of α for different values of
N2/N1. Dashed curves correspond to the inner condensate, solid curves—to outer one. From
figure 4(c) one can see that the critical velocities really can intersect. Physically this means
that there is the possibility to exchange the vortex states between condensates by shifting the
centres of the trapping potentials with respect to each other for fixed angular velocities.

In summary, we have shown that for simultaneously trapped condensates consisting of
87Rb atoms in two different hyperfine states the small displacement of the minima of the
trapping potentials with respect to each other produces profound effects on the phase separation
and vortex states. The behaviour of the centres of mass of the condensates which follows from
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Figure 4. Critical velocities of outer condensate $N1/ω and the inner condensate $N2/ω as
functions of α for different values of N2/N1. Dashed curves correspond to $N2/ω and solid
curves to $N1/ω.

our results is in agreement with the experiment by Hall et al [1]. The predicted possibility
of the vortex states exchange between condensates due to the shift of the trapping potentials
remains to be investigated experimentally.
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